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nated area and the duration of the effect at the receiving point
and At is the interval between successive peaks at that point.

Table 8 shows that At is several seconds, whereas &t is
less than 1 see. This is strictly true, of course, only if the
body is exposed to plane waves from one direction only;
transmitters at several points S;, S, S; (Fig. 15) give rise to
several seattered waves at point E, so that the effect lasts for a
substantially longer time.

Finally, o exceeds oy only for bodies of small size if there
is no magnetic field; for example, omax =~ 0.005 m? for X =
30m, z = 300km, and By = 0.5 m, 80 that omn../ 60 = 7 (loniza-
tion produces much the greater scattering), whereas omax ~
0.02 m? and o max/00 = 0.5 for By = 1 m, so that the sphere
scatters more than the track. Further, ¢ varies as 1/¢ if the
dielectric constant of the plasma, e alters; therefore, the effect
should be substantially greater if the body lies in a region in
which e approaches zero. However, this last case demands
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special examination; no precise deductions of the behavior of
o as e — 0 are possible without a detailed analysis.

—Recetved August 4, 1961
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Reviewer’s Comment

The results of a previous contribution* are used to present
numerical results (based on computer calculations) on the
scattering cross section of a wake induced by a spherical
satellite vehicle traversing typical regions of the ionosphere.
The influence of a magnetic field is specifically included.
Effects of height, frequency, ion temperature, vehicle ve-
locity, and geometry (direction of magnetic field, vehicle
velocity, and earth stations) are illustrated by the calcula-
tions.

The contribution is noteworthy in that at least three sig-
nificant conclusions can be drawn from the numerical results.
These are:

1) The scattering cross section is a maximum at the mirror
image reflecting points only when the vehicle velocity is
parallel to the magnetic field.

* Pitaevskil, L. P., Geomagnetizm i Aeronomiia (Geomagnet-
ism and Aeronomy) 1, no. 2, 194-208 (translated on pp. 994
1000 of thisissue). Unfortunately the notation used in the fore-

2) When the vehicle velocity is not parallel to the mag-
netic field, major maxima occur at angles off the specular
direction, the deviation depending upon vehicle velocity
and scattering angle of the wave.

3) A series of maxima and minima in the scattering cross
section occurs. These form a symmetrical sequence if the
vehicle moves parallel to the magnetic field, but are notably
unsymmetrical (in magnitude) at other directions of the
vehicle motion relative to the magnetic field.

An attempt to interpret high frequency radio reflections ob-
served from orbiting satellitest in terms of this theory and
radio observations designed to verify these predictions would
form a worthy contribution in the future.

—M. P. BacHYNSKI

Director, Microwave Research Laboratory
RCA Victor Company Ltd.

Montreal, Canada

mentioned and the present article are somewhat different.
T For instance: Krauss, J. D., et al., Proc. Inst. Radio Engrs.
48, 672678, 19131914 (1960).
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Analog Computer Solution of the Problem of Accumulation
of Perturbations

G. V. SavINOV

ROBLEMS involving the dynamic accuracy of auto-

matic control systems are gaining importance steadily
because of the more exacting engineering requirements im-
posed on such systems. In this context, particular interest
centers on a buildup of perturbations, a problem that was
posed and solved for linear systems by Bulgakov and de-
veloped further in subsequent work by Roitenberg, Kuzov-
kov, and others.!—*

The present paper deals with a dynamical system subjected
over a finite time interval to the action of perturbing forces
bounded in absolute value. We consider the determination
of maximum deviation of any given coordinate of the dynami-
cal system invelved, the peak value being accumulated to

Translated from Vestnik Moskovskogo Universiteta, Seriia
I: Matematika i Mekhanika (Bulletin of Moscow University,
Series I: Mathematics and Mechanics), no. 3, 62-76 (1961).
Translated by Faraday Translations, New York.

some preassigned instant of time under the most unfavorable
perturbation conditions. ‘

The solution of this problem requires integration of an
auxiliary system of differential equations, known as an ad-
joint system of equations—a task suited to analog computers.

The procedure followed in using analog computers to solve
the problem of cumulative perturbations in linear and
nonlinear systems, as well as the “hit” problem, which is
strikingly similar in character to the problem of accumulated
perturbations, will be outlined.

Solution by Analog Computer of the Problem of
a Buildup of Perturbations in Linear Systems

Consider a dynamical system whose motion is described
by the following linear differential equations with variable
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coefficients:

x; = i ai(t)zr + fi(D) t=1,...,n (1
k=1

Here, 71, . . . , Z. are the system coordinates; a.(t) the time-
varying system parameters; f:(t) the external perturbations
or inputs acting on the system, and satisfying the constraint

If:)] < K

The problem reduces to a determination of the magnitude
of |21(T)} max,-1-e., the maximum cumulative deviation of the
kth coordinate of the dynamical system by some predeter-
mined instant of time 7 under worst-case perturbation condi-
tions when the greatest deviation in the kth coordinate is
brought about.

In addition to the system of equations (1), we consider also
an auxiliary system, again known as the adjoint system, of
differential equations:

b = —kZ a®pe  i=1,...,n 2
=1

It is seen readily that the matrix of the coefficients of the
adjoint system is obtained by changing the sign and trans-
posing the matrix of the original system.

On multiplying both sides of each equation in system (1)
by p: and in system (2) by the factor x;, we find, after adding
all the equations in system (1) to the equations in system (2):

d n n
5 2w = D pifi
i=1 voe=1
Integrating the expression so obtained from 0 to ¢, we find

2 n0p) = ToOpO) + [ X phdr @)

=1
Let 2;(0) = 0. Then, for time ¢ = T, we have

n

Sapn) = [T i @

i=1 i=1

The functions p:(f) figuring in these formulas are not com-
pletely defined, since no initial conditions have been specified

as yet for p,.
Let us now assign initial conditions for p; such that

pi(T) =1 for 1=kF )
pi(T) =0 for 1%k

Then, from Eq. (4), we have

T n
wT) = [ 3 pinfinds ©
i=1

Equation (6) provides the relationship between the magni-
tude of the kth coordinate of the system and the magnitudes
of the external disturbances. This makes it directly evident
that the peak accumulated deviation of the kth coordinate
by some prespecified instant of time T is governed by the
following law regarding the variation of the external per-
turbations:

f:(t) = K, signp.(t) t=1...,n )

whereupon the value of the peak cumulative deviation in the
kth coordinate of the system is

W T
lxk(t)|max = ’L=Zl Ki L [pt(T) | dT

From Egs. (6) and (7), we see that the worst case of external
perturbations in which the deviation of the kth coordinate
of the system reaches its peak value by time T is obtained
when the external perturbing forces f:(f) assume their maxi-
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mum possible values, and the sign of these perturbations
must be the same as the sign of functions p;(f).

As stated earlier, functions p;(t) are defined by the adjoint
system (2), which is integrable at the initial values of the
variables satisfying conditions (5).

Functions p:(t), required to compute the maximum cumula-
tive deviation of coordinate xx(T), may be obtained by
integrating the system of differential equations (2) with the
aid of analog computers.

It is known generally that analog computers can simulate
systems described by a system of differential equations with
predetermined initial conditions (5).

Since only finite values of variables p;(T) are known in the
problem under discussion, it is first necessary to find the
initial values for p;. The latter may be found by integrating
system (2) “backwards,” i.e., by introducing a new inde-
pendent variable 7 defined by the expression ¢t = 7 — 7.
After this change of independent variable, the system of
equations (2) transforms to the form

d n
— d_’r pi(T) = kgl aki(T - T)pk(T)

1=1,...,n

(8)

The system of equations (8) ean be integrated in turn by
means of analog computers, with the following initial condi-
tions [see Eq. (5)]:

pilT — )| re0=p(T) = 0 for T =k
(T — 1) s=0=1

After a time interval equal to T has elapsed, the values of all
the variables must be fixed. Since pi(T' — 7),=7 = p:(0),
the fixed values of the variables in system of equations (8)
are, in fact, the initial values we need for the variables in the
adjoint system of equations (2). Although the initial system
(1) i.e., both (1) and the adjoint system of equations (2), are
systems with constant coefficients, system (8) differs from
the adjoint system solely by the signs accompanying all the
derivatives, and it is particularly easy to carry out the
integration of system (8) in that case.

On the basis of the discussion up to this point, we suggest
the following procedure for utilizing analog computers to
find the maximum cumulative deviation in the kth coordinate
of a linear system when the disturbances acting on the system
are bounded with respect to absolute value.

A System of equations (8), which is integrated over the
interval 0 < 7 < T at the initial conditions specified in (9),
is simulated by analog techniques. A set of values of p(0),
is determined as a result of the integration.

B The adjoint system (2), which is integrated over the
range 0 < ¢t £ T at the initial values found previously, is
simulated. In the process of integrating the adjoint system
(2), the aid of additional functional units makes available
values of b;, where

r .
bi:j:) |ps(Dldr  ¢=1,...,n

C The value of the maximum cumulative deviation cf
the system kth coordinate during time 7 is calculated from
the formula,

9

1xk(T)| mex — Z Kibi

=1
As an example, consider the dynamical system described by

& = 0.3z + fu(8)
2y = —0.32; — 0.04x, 21(0) = 2,(0) = 0
Let T = 15 sec and |fi(T)| < Ki = 0.1. It is necessary

to determine the maximum accumulated deviation with
respect to coordinate z;, that is, to calculate the value of

l xl(T) Pmax-

(10)
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1.00
o= A(t) 0.85
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? sec

=024

Fig. 1

The adjoint system of equations in this case assumes the
form

fl = 0.3p:
P2 = —0.3p; + 0.04p, 1D

To find the initial values p:(0) and p,(0), we must run the
integration of system (11) “backwards” in time, which is
equivalent to a ‘“‘forward” integration of the following system
of equations [see Eq. (8)]:

ﬁl(‘r) = —0-32’2( )
() = 0.3p1(r) — 0.04pa(r) (12)

and here pi(7)| r=0 = 1 and pa(7)], =0 = 0 [see Eq. (9].
During the integration of system (12), the analog computer
is used to find the values of the variables at time T = 15 sec:

pl(T)] =7 = —0.24 p2(7')] s=7 = —0.72

The values obtained here are the initial values sought for

variables p(f) and ps(t) in the adjoint system (11).
Integration ‘of the adjoint system (11) using initial values

p:1(0) = —0.24, po(0) = —0.72 enables us to find the values

T
of pi() and K, fo | p1(t)| dt (see the oscillograms in Fig. 1).
The magnitude of the cumulative deviation is

| (T | max = 0.85

As already stated, the maximum deviation in the dynamical

kAT
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15 ¢, sec
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Fig. 2
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system is due to a change in the external disturbances obey-
ing the law,” which in our case is of the form

f1t) = 0.1 signp:(¢)

As an illustration of this statement, the fundamental system
of equations (10) was simulated by analog techniques for
various forms of the function fi(t). (However, in all cases
the constraint |£i(t)] < 0.1 was observed.) In Fig. 2, we
see the oscillogram of the transient with respect to coordinate
2y at fi(®) = 0.1 signp,(£); pi(0) = —0.24; po(0) = —0.72.
Figure 3 presents oscillograms of transients in the system with
respect to coordinate x;, given the same law governing the
variation of fi(f) and the following initial conditions for p,(¢)
and po(f):

m(0) = —0.24 pa(0) = —0.72 -curvel
p(0) = —0.25  p(0) = —0.25  curve 2
n(0) = 0 p(0) = —0.75 curve 3

The oscillograms demonstrate that the maximum cumulative
deviation is obtained only for certain initial conditions apply-
ing to p:(t) and satisfying condition (5) (curve 1). The
behavior of the system (with respect to coordinate ;) in
response to other laws of variation of fi(?) is shown on the
oscillograms in Fig. 3, for which fi(t) = 0.1 sin2m»t, and
curve 4 corresponds to » = 0.05 cps; curve 5 corresponds to
v = 0.1 ¢ps, and curve 6 to » = 0.2 cps. As the frequency
increases, the magnitude of the cumulative disturbance

085

it

£ sec

Fig. 3

starts to decline. It is clear from inspection of the curves
that the maximum deviation in the case of a harmonic dis-
turbance does not exceed the value 0.4, whereas the maxi-
mum cumulative deviation is 0.85.

Analog Solution of the “Hit’’ Problem in Linear
Systems

The problem of cumulative disturbances is closely con-
nected with the “hit” problem. This is the problem of find-
ing the law of variation of forces acting on a dynamical system,
in response to which several coordinates of the system
(termed controlled coordinates in the following) assume pre-
determined values at a predetermined instant of time. This
problem has been studied in detail, in its most general formu-
lation, by Roitenberg.®

Consider now a dynamical system described by the equa-
tions of motion (1). We restrict our inquiry to the case of
random inputs (forces) which maintain a constant value over
finite time intervals and pose the problem of finding the value
of those inputs at which the conditions

Tn(T) = Zm

where Z,, are preassigned numbers are fulfilled.
For the solution of this problem, we turn to Eq. (3). We
introduce the terminology pi(f)m, ¢ = 1, .. ., » for functions

m=1...,r
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satisfying the adjoint system (2) and the following initial
conditions:

pi(T)]m =1 for = m
2i(T)]m =0 for 1 #Em
t=1,...,n m=1...,r

Equation (3) may be transformed for ¢t = T:

n

2 T
2 [} Befiir = vl = L a@pOle o

i=1 i=1

m=1...,r

These are the equations from which we must determine the
input disturbances f:(t).

The initial values [p:(0)]. entering here must be deter-
mined by the method outlined in the preceding section. We
introduce the notation

n

Nuw = 2a(T) — 2 2:0)[p:(0) ]

7=1

m=1...,r

(14)

After the values of {p;(0)]. have been determined, ¥,, values
will be known numbers.

Accordingly, we obtain from Eq. (13) r equations useful
in determining the external disturbances f;:

i=1

LT
3 [, n)ofin)dr = N, 5

m=1...,r

We first consider the case in which all the system coordinates
are controlled coordinates (r = n) and the number of ex-
ternal input disturbances (external forces) is equal to the
number of controlled coordinates.

Since we are looking for disturbances f; in the class of
sectionally constant functions, we may assume

Ji®) = Ki=const 0<t<7T

and Eqgs. (15) transform in this case to a system of linear
inhomogeneous algebraic equations for K;:

cukKi 4+ .00+ 1o = Nl
canl+ v +CnnKn = Nn

where

twi = [ 0 Nudr

For the case in which not all the coordinates in the system are
controlled coordinates (r < %) but in which the number of
external disturbances (forces) is, as before, equal to the num-
ber of controlled coordinates, we again obtain a system of
algebraic equations whose order will be r.

The case where the number of input disturbances (external
forces) is less than the number of controlled coordinates is of
particular interest. Since in this case the number of un-
known quantities (inputs) will be less than the number of
equations which these disturbances must satisfy, the problem
has no solution. However, it may be solved by using the
approach described in a paper mentioned earlier,® in which
the author divides interval (0,7) into several equal or unequal
subintervals and looks for disturbing step functions f:(t),
which remain constant over the subintervals.

This partition into subintervals makes it possible to in-
crease artificially the number of input disturbances so that
it becomes equal to the number of controlled coordinates.
For example, let a disturbing force f;(f) be acting on a system,
and let it be required to determine the function f;(#) (from
the class of step functions) satisfying the conditions z.(T) =
Fn(m = 1,...,7r). Following the idea developed in Ref. 6,
we partition the open interval (0;) into » subintervals (0,4),

., (t—1,T). We now denote as Kj;, . . . ; K; the values
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of the step function f;(¢) on each subinterval. Then system
of equations (15) may be recast in the following form:

dllKjl + PR + dHKjr = N1 (]6)
drlKjl + « e + drrKJ'r = Nr

where

— tz .
du = ft [pi(7) e dr (17)

-1
It should be noted that, although the partitioning into sub-
intervals is quite arbitrary, the determinant consisting of
coefficients dr; must not vanish.
As an example, let us solve the “hit” problem in the system
described by

T = 0.3z + fl(t)

We must find function fi(f) (in the class of step functions)
capable of satisfying conditions*

z2(T) =2(T) =0

Since the number of disturbing forces here is less than the
number of controlled coordinates, interval (0,T) is broken
down into two subintervals, denoted as K;; and K, the values
of the step function f;(f) on those subintervals.

In order to find numerical values for Ny and N, [see Eq.
(14)], we first must find the initial values (of which there
will be two sets in this case) for the functions satisfying the
adjoint system of equations.

After performing the ‘“backward” integration of the adjoint
system on an analog computer, we obtained numerical values

T = 10 sec

[2:(0) h = 0.1 ()] = 0

[p:(0)]. = O [p2(0)]. = 0.1
Computations based on Eq. (14) yielded

N, = —0.1 Ny = —0.01

Analog computer integration of the adjoint system furnished
us with a set of values for di; [see Eq. (17)}—(here, 4, is as-
signed the value of 5sec):

du = 035 d12
d21 = 027 d22

The system of algebraic equations (16) assumed the form

0.35K11 - 036K12 = "'01

—-0.36
0.67

On solving this sytem, we have
Ku = _021 K12 = 009

To illustrate the ‘“hit” problem under consideration, the
initial dynamical system is simulated by an analog com-
puter. Figures 4 and 5 present oscillograms of transients
relative to coordinates x; and z,, both in an autonomous sys~
tem (without disturbing forces) and with the disturbing
forces that have been computed, a graph of which appears in
Fig. 4.

Solution on Analog Computers of the Problem
of a Buildup of Perturbations in Nonlinear
Systems

In the solution of the problem of a cumulative buildup of
perturbations in nonlinear dynamical systems, it is conven-

* In this case, the “hit’’ problem coincides with the problem of
accelerated reduction of a dynamical system to the equilibrium
position.”
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ient to use the Pontryagin maximum principle, which is
widely used in optimization theory., ¢

Let the dynamical system in question be described by the
following nonlinear equations:

Ti = §0i($1, sy Ty fli e yf"mt) (19)
i=1,...,n
Here, as earlier, z;, . . . , ©. are the system coordinates;
fi, . . ., fn are the external disturbances, bounded in absolute
value.

The problem reduces to a determination of the maximum
cumulative deviation in the kth coordinate of the system in the
worst-case variant of effect of external forces.

The solution to the problem of cumulative perturbations
in a linear system has led us to the necessity of considering
the solution of some auxiliary system of equations run on an
analog computer. This auxiliary system is the adjoint
system. The nature of the transients in the original system
is intimately related to the nature of the transients in the
adjoint system and conversely. Both systems may be re-
garded as parts of some overall dynamical system. The sym-
metrical character of the equations of the original and ad-
joint systems allow us to regard these equations as the ca-
nonical equations of motion of an overall dynamical system.

Extending this idea to the nonlinear case, we supplement
the initial dynamical system (19) by some auxiliary system
such that the equations of motion of the overall system
formed in this manner will have the form of canonical equa-
tionsin the Hamiltonian form.

It is not difficult to realize that the Hamiltonian that is
required must have the form

H@, . ooy Ty« «+ s Pafty o oy fud) =
n n
> piti— D pigi (20)
7=1 i=1

The canonical equations of motion of the overall system are
written:

. _OH ., _ _OH
T; = pi = adh‘

Consequently, the extension of the original system to the
complete system is carried out such that the first group of

i=1,...,n (21)

Al

. . Fig. 5
1) ) t, sec
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canonical equations coincides with equations of motion (19)
of the original nonlinear dynamical system. The second
group of equations (21) then also determines the motion of
the auxiliary system, which we shall term an adjoint system
by analogy with the linear case. Therefore, functions p,(¢),

., pa{t) are the coordinates of the adjoint system and as
such may also be viewed as momenta in the overall system.

In optimization theory, the problem of the choice of proper
law for disturbing functions f;(f) optimizing at some fixed
instant T the linear form

n
8 = > cxiT)
i=1
is considered in particular.

It is readily shown that this requires optimization of the
Hamiltonian funection H with respect to disturbing forces
fi(t). In fact, consider an expression identically vanishing
whenever Eqgs. (20) and (21) are satisfied:

n
S opiy — H=0
=1

If we consider the variation of this expression while taking
the variation of the disturbing functions f.(f), then, by virtue
of Egs. (21), this variation will be zero at each instant of
time. Accordingly, the following is valid:

5 fo {Exmz —~ H}dt

By transforming the latter expression, we obtain
no,T

Z pIBxll - Ef pidzdt + > fo E:Opidt —

1=1 i=1

T
ﬁ)aHdt=0 (22)

Moreover
bH
0H = Z sz 6p + Z — 6f
i=1 af

Substitution of the value of 6H into Eq. (22) eventually
yields, with Eqgs. (21) taken into account

S pesas | - f; f R (23)

1=1

In optimizing the linear form S(T'), condition

n
88 = D eda(T) = 0
i=1
must be satisfied. Comparing this last equation to Eq. (23)
and also bearing in mind that 6z;(0) = 0, we arrive at the
conclusion that, provided conditions p/(T) = ¢; and 7 = 1,
., n are fulfilled, optimization of form S(7) requires opti-
mization (with respect to disturbing functionsf;) of function H.
Detailed analysis with investigation of the sign of the
second variation shows that, in order to maximize (mninimize)
the form S at a fixed instant 7', it is necessary to maximize
(minimize) function H relative to the input disturbances f;.
This is, in fact, the gist of the Pontryagin maximum principle
for the problem in question (9).
Note that, for a linear system described by Eqs. (1), fune-
tion H assumes the form

= Z_:lkz_ mkxkpz'i_zpf

and, consequently, in accord with the maximum principle,
we arrive at the following necessary law of variation for f::

J:i(t) = K;signp:(t)  {fi(®} < K
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The need for such a law of f; in the problem of maximization
of the linear form

n
S =3 cai(T)
i=1
is particularly apparent when we recall condition (4).
In fact, assuming ¢; = p:(T) in (4), we immediately obtain

Sead) =8 = [73 pfindr

=1 i=1

which illustrates the need for the foregoing law on variations
in f:().

Returning to the problem of cumulative perturbations,
note that it flows from the problem of maximization of the
linear form 8, with the assumption that ¢; = 0 for ¢ = k,
¢ = 1. Consequently, in a nonlinear dynamical system
subjected to external influences, the maximum cumulative
deviation in the kth coordinate at an instant 7 will occur in
response to such f;(f) as are maximized at each instant of time
with respect to the disturbing inputs of the Hamiltonian
function H of the entire system. Functions pi(¢), . . ., p.(f)
included in the expression for the Hamiltonian H must satisfy
the adjoint system and conditions p;(T) = 0 for ¢ = L,
po(T) = 1. As in the linear case, functions p;({) must be
realized by a computer simulating the adjoint system. Asin
the previous case, we encounter the problem of finding the
initial values for functions p;. The difficulty is that, in the
nonlinear case, the adjoint system includes the coordinates
of the original system, which prevents our using the method
of “backwards” integration of the adjoint system. From
the mathematical viewpoint, we are dealing here with a
system of nonlinear differential equations of order 2n, where,
for n variables (the coordinates of the original system), the
initial values are known, and, for the remaining 2n — n vari-
ables (coordinates of the adjoint system), the final values
are known. Finding the variables of the adjoint system from
these initial-value data is an independent problem which can
be solved, in particular, by means of specialized analog
devices.

In the absence of such special-purpose analog computers,
this problem may be solved on ordinary analog computers
by the search method. For example, consider the nonlinear
second-order oscillating system subjected to an external force
bounded in absolute value. The equation of the system has
the form

4 1+ yada = F® (24)

We shall solve the problem of maximum cumulative value
of coordinate z; at some fixed time T for the following nu-
merical parameters ‘

v =01 7] <K =01
T = 4.2 sec 2,(0)=2,(0) = 0

Let us present Eq. (24) in the form of the system

i‘l = X3
To = —xp — 0.1.70;3 + f(t)

In accord with Eq. (2), the expression for the Hamiltonian
has the form

H = 2p1 — 2192 — 0.12%p2 + fp. (25)
This leads directly to the adjoint system
Pr = p2 + 0.32:%p.

P = —

On the basis of the foregoing discussion and also from the
form of function H, Eq. (25), we infer that the maximum
deviation of coordinate z; at the instant of time 7 will be, in

(26)
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obedience to the following law of variation of the force:

f@) = K signp.()

Function p.(t) appearing here is found from the solution of
system (26), which we seek under the following conditions:

n(M) =1 (T) =0 27)

The search method (sequential scanning of all possible values)
was used to find the initial values of the functions p;(0) and
p2(0) satisfying the condition (27). These were found to be

m(0) = —0.38 2:(0) = —0.93

As an illustration of the foregoing, we reproduce oscillograms
of the transients in the original system and in the adjoint
system, both analog-simulated.

Figure 6 shows oscillograms of functions p:1(f) and ()
as solutions of the adjoint system at p;(0) = —0.38, p2(0) =
—0.93. Moreover, the diagram displays oscillograms of
transients of this dynamical system with respect to coordi-
nate z; for the input disturbance f = 0.1 signp, at various
initial values p:(0) and ps(0).

Curve 1 corresponds to the dynamical process at p.(0) =
—0.38; p:(0) = —0.93. Curve 2 corresponds to the dynami-
cal process at p1(0) = —0.38; p2(0) = 0. Curve 3 corre-
sponds to the dynamical process at pi1(0) = 0; p(0) = —0.93.
Curve 4 corresponds to the dynamical process at p(0) =
—0.75; ps(0) = —0.2. A comparison of curves 1 to 4
demonstrates that the maximum deviation in coordinate 2,
is to be observed on curve 1, corresponding to the initial
conditions satisfying (27). The value of the maximum
accumulated disturbance is then found to be 0.22.

Oscillograms of the transients in the same coordinate
in response to a harmonic law of variation in the input dis-
turbanee f = 0.1 sin2m»t enable us to determine the maximum
deviation in coordinate z;, namely 0.21, that is, less than in
the worst-case law of variation for an external disturbance.

Summary

The feasibility of employing analog computers to solve
such problems as cumulative disturbances, “hits,” and prob-
lems involving high speed equilibration of dynamical systems,
was demonstrated previously. In the last two cases, the



1014 . G. V. SAVINOV

electronic analog functions as an inseparable part of the
. automatic control system, making it possible to shape the
required inputs.

The author expresses his gratitude to R. A. Velershtein
and N. V. Prolygina, his co-workers in the Oscillations
Laboratory, who rendered valuable assistance in the com-
pletion of the experiment.

—Submitted November 23, 1962
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Reviewer’s Comment

This paper describes an analog computer technique for
systems analysis for determining a ‘‘worst worst-case.”
The reviewer is not aware of the application of this tech-
nique in this country, although alternate methods are em-
ployed to obtain equivalent design information. Therefore,
the paper is a useful addition to the literature.

The author employs a set of “adjoint equations” to obtain
intermediate results. It should be noted that his use of the
term “adjoint” differs from the use of the same term in this
country. As applied by Laning and Battin' and others,2—*
the “adjoint method” is used for determining weighting
functions for time-varying linear systems. The latter are
closely related to the rms response of a system to random
inputs.

One distinguishing difference of Savinov’s development is
his emphasis on worst-case performance. In this, he is
close to some of the techniques used in analysis for optimum
control systems (cf. Chang®). The example for the ‘hit”
problem resembles a contactor or “‘bang-bang” servo system.
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The extension to nonlinear systems is of particular in-
terest. Conceivably these computer solutions might be
implemented in fast-time to permit on-line optimization of
a system or process.
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Reliability Computation of Complex Automated Systems

A. M. Porovko

OMPUTING the reliability of a system means deter-

mining its quantitative reliability parameters from the

known parameters of the elements which make up the
system.

A complete description of reliability can be given in terms
of the probability of operation without failure P(), average
time of reliable operation T.,, and the likelihood of failure
A{#). The most widely used methods of computing the
foregoing parameters are based on the assumption that the
failures have a Poisson distribution and that an exponential
reliability law applies.! In this case, to compute P(t), Tav,
and A(t) of the system, the likelihood of failure must be
known for all elements of the basie system. Since the likeli-

Translated from Izvestiia Akademii Nauk SSSR, Otdel. Tekh.
Nauk, Energetika i Avtomatika (Bulletin of the Academy of
Sciences USSR, Div. Tech. Sci., Power and Automation), no. 5,
174-178 (1960). Translated by Faraday Translations, New
York.

hood of failure of the elements depends essentially on their
schedules and usage, one must have a family of curves which
will determine the likelihood of failure as a function of the
loading factors, the temperature of the ambient medium, the
amplitude and frequency of vibrations, humidity, ete.
Such relations are not available at present for most elements
of automated systems. Further, the forementioned compu-
tational methods cannot be applied to the calculation of
quantitative reliability parameters under various conditions
of usage of the same system and make the formulation of reli-
ability criteria difficult for separate parts and units of a com-
plex system, and also lead to great computational errors.
The coefficient method given here for computing the reli-
ability of complex systems is free, to some extent, of the
forementioned difficulties.

The method is based on the following assumptions: The
failures are random and independent events; the failure
of any element leads to failure of the entire system; the likeli-



